The Logical Framework

Exercise  3.1

To determine the corresponding truth values for the statement (p ^ q) v r.

Proof:
p      q      r       p ^ q      (p ^ q) v r

T       T     T         T              T
T       T     F         T              T
T       F     T         F              T
T       F     F         F              F
F       T     T         F              T
F       T     F         F              F
F       F     T         F              T
F       F     F         F              F

Exercise  3.2

By constructing the truth tables , show that ~ (p ^ q) and (~p) v (~q) are logically equivalent.

Proof:

p        q     ~p     ~q        (p^q)       ~ (p ^ q)         (~p) v (~q)

T         T       F      F          T                 F                  F
T         F       F      T          F                 T                  T
F         T       T      F          F                 T                  T
F         F       T      T          F                 T                  T

Hence proven   ~ (p ^ q)  and  (~p) v (~q) are logically equivalent.

Exercise  3.3

Construct the truth table for the statement (~p) v q, and deduce the it is logically equivalent to p -> q.

Proof:

p         q       ~p      (~p) v q     p -> q

T        T        F           T             T
T        F        F           F              F
F        T        T           T             T
F        F        T           T             T

The corresponding truth values are determined for the statement (~p) v q and also it is proven to be logically equivalent to p -> q.

Exercise 3.4

Verify explicitly that the truth table for (p=>q) ^(q=>p) is the same as the one for  p <==> q.

Proof:

p       q       p=>q      q=>p          (p=>q)^(q=>p)          p<==>q

T      T          T            T                      T                             T
T      F          F            F                       F                             F
F      T          T            F                       F                             F
F      F          T            T                       T                             T

Hence proven, the truth table for (p=>q) ^ (q=>p) is the same as the one for  p <==> q.

Exercise 3.5

Write down the contrapositive forms of the statements :

* if n is a multiple of 7 then n is not a multiple of 3.
Solution  :
If n is a multiple of 3 then n is not a multiple of 7.

*if n is a multiple of 12 then n is a multiple of 4.
Solution :
If n is not a multiple of 4 then n is not a multiple of 12.

Exercise 3.6

Determine the truth values of the following statement.

“For every pair of natural numbers x and y such that  x > 2y there is a natural number z such that
x > z > y”
Solution :
If  x and y are a pair of natural numbers such that x  > 2y. Since y is a natural number, 2y is also a  natural number.
Then x (2y+1) or larger is to satisfy the condition
x >2y  so 2y+1.

Therefore we conclude,
Let : x = 2y + 1,
z = 2y
So y  <  2y and  2y  <  2y+1 , y  <  z  <  x
So proven  x < z < y .

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s